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ABSTRACT

BACKGROUND

Nonophthalmologist physicians do not confidently perform direct ophthalmos-
copy. The use of artificial intelligence to detect papilledema and other optic-disk
abnormalities from fundus photographs has not been well studied.

METHODS
We trained, validated, and externally tested a deep-learning system to classify
optic disks as being normal or having papilledema or other abnormalities from
15,846 retrospectively collected ocular fundus photographs that had been obtained
with pharmacologic pupillary dilation and various digital cameras in persons from
multiple ethnic populations. Of these photographs, 14,341 from 19 sites in 11 coun-
tries were used for training and validation, and 1505 photographs from 5 other
sites were used for external testing. Performance at classifying the optic-disk ap-
pearance was evaluated by calculating the area under the receiver-operating-
characteristic curve (AUC), sensitivity, and specificity, as compared with a reference
standard of clinical diagnoses by neuro-ophthalmologists.

RESULTS

The training and validation data sets from 6779 patients included 14,341 photo-
graphs: 9156 of normal disks, 2148 of disks with papilledema, and 3037 of disks
with other abnormalities. The percentage classified as being normal ranged across
sites from 9.8 to 100%; the percentage classified as having papilledema ranged
across sites from zero to 59.5%. In the validation set, the system discriminated
disks with papilledema from normal disks and disks with nonpapilledema abnor-
malities with an AUC of 0.99 (95% confidence interval [CI], 0.98 to 0.99) and
normal from abnormal disks with an AUC of 0.99 (95% CI, 0.99 to 0.99). In the
external-testing data set of 1505 photographs, the system had an AUC for the
detection of papilledema of 0.96 (95% CI, 0.95 to 0.97), a sensitivity of 96.4% (95%
CI, 93.9 to 98.3), and a specificity of 84.7% (95% CI, 82.3 to 87.1).

CONCLUSIONS

A deep-learning system using fundus photographs with pharmacologically dilated
pupils differentiated among optic disks with papilledema, normal disks, and disks
with nonpapilledema abnormalities. (Funded by the Singapore National Medical
Research Council and the SingHealth Duke-NUS Ophthalmology and Visual Sci-
ences Academic Clinical Program.)
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XAMINATION OF THE OPTIC NERVES IS A

fundamental component of the clinical

examination, but direct ophthalmoscopy
is usually avoided or poorly performed by gen-
eral physicians and nonophthalmic specialists.*
Detection of papilledema, defined as optic-nerve
edema from intracranial hypertension, and the
ability to determine that the optic disk is normal
are valuable in the evaluation of patients with
headache and other neurologic symptoms. The
findings on ophthalmoscopy influence diagnos-
tic strategy and treatment options.>*? Failure to
detect papilledema may result in visual loss and
neurologic complications.?®13

Digital ocular fundus photography has been
used to obtain optic-disk images for the purpose
of detecting papilledema and other optic-disk
abnormalities in a variety of clinical settings,
including emergency departments, urgent care
centers, and neurologic and general adult and
pediatric clinics.»*7121418 Iy one study conducted
in an emergency department,'? 8.5% of patients
presenting with headache had abnormal findings
on fundus photographs. However, these photo-
graphs need to be interpreted by physicians on-
site at the time of photography® or sent through
tele-ophthalmology platforms for assessment by
ophthalmologists or other experts.1%2
Artificial intelligence and deep learning have

been developed for the automated detection of
diabetic retinopathy and glaucomatous optic neu-
ropathy from ocular fundus photographs.?3°
We investigated whether a deep-learning sys-
tem could aid in the diagnosis of optic-nerve
abnormalities, particularly papilledema, from
fundus photographs. We trained, validated, and
externally tested a deep-learning system to
identify and classify normal optic disks, disks
with papilledema, and disks with other abnor-
malities from digital ocular fundus photographs
collected from a large, international, multiethnic
population.

METHODS

STUDY DESIGN AND OVERSIGHT

We conducted a training, validation, and external-
testing study on an artificial intelligence-based
deep-learning system using digital color ocular
fundus photographs, retrospectively collected by
an international consortium (BONSAI: Brain and
Optic Nerve Study with Artificial Intelligence)

composed of neuro-ophthalmologists. (For details
on study group organization and participating
centers, see Section S1 in the Supplementary Ap-
pendix, available with the full text of this article
at NEJM.org.)

We first trained and validated the deep-learn-
ing system using 14,341 fundus photographs ob-
tained at 19 sites in 11 countries; we then exter-
nally tested the system on 1505 photographs
obtained at 5 other centers in 5 countries. The
study was approved by the centralized institu-
tional review board of SingHealth, Singapore, and
at each contributing institution and was con-
ducted in accordance with the principles of the
Declaration of Helsinki. Informed consent was
exempted, given the retrospective nature of the
data collection and the use of deidentified ocu-
lar fundus photographs.

IMAGE ACQUISITION

Retrospectively collected fundus photographs were
obtained from one or both eyes after pharmaco-
logic pupillary dilation, with the use of various
commercial digital fundus cameras. (For details
on the cameras used in the study, see Section
S2b and Table S1.) Images were centered on either
the macula or the optic disk, but always includ-
ing the optic disk, at various fields of view (sub-
tending 20 to 45 degrees). Deidentified, unaltered
images (size, 0.5 to 2 megabytes per image) were
transferred to the Singapore Eye Research Insti-
tute for inclusion in the study.

STUDY PATIENTS

The study included patients with optic-nerve dis-
orders and healthy persons of multiple ethnic
groups from 24 centers in 15 countries. The
ocular fundus photographs, including those of
normal optic nerves and a variety of common
neuro-ophthalmic conditions affecting the optic
nerves, were collected in each center by neuro-
ophthalmologists who routinely obtain fundus
photographs and who had access to the patients’
medical records (principal investigators from each
of these centers are authors of this article). In ad-
dition, photographs of normal optic disks were
randomly selected from 3 centers, including In-
dian, Asian, and non-Asian patients, which pro-
vided large sets of photographs of normal optic
disks, as determined by general ophthalmolo-
gists. (For patient characteristics, see Section S2a,
Fig. S1, and Table S2.)
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DEFINITION OF OPTIC-DISK ABNORMALITIES
Neuro-ophthalmologists provided a specific diag-
nosis, gathered retrospectively from medical
records, for each fundus photograph at the time
of clinical evaluation, considered for the purposes
of this research to be the reference standard, on
the basis of the appearance of the optic-nerve
head as well as the medical evaluation, ancillary
testing, and follow-up visits. All the patients seen
by neuro-ophthalmologists underwent neuro-
ophthalmologic evaluations, including visual-
field and other tests, in order to obtain a final
clinical diagnosis pertaining to each photo-
graph, according to standard diagnostic criteria
that could include brain imaging and lumbar
puncture in some cases. (For details on the di-
agnostic process and reference standards, see
Section S2a.) Patients from the three centers that
provided photographs of normal fundi also un-
derwent comprehensive evaluations by ophthal-
mologists.

Fundus photographs were classified by the
study steering committee into three groups,
consistent with the original reference diagnosis:
normal optic disk; disk with papilledema due to
proven intracranial hypertension; and disk with
other abnormalities, including other visible ab-
normalities of the optic-nerve head such as ante-
rior ischemic and inflammatory optic neuropa-
thies, optic-disk drusen, optic atrophy, and
congenital optic-nerve abnormalities. Patients
with normal optic nerves were included only in
the absence of any ocular conditions such as
substantial media opacities, retinal disorders,
or glaucoma. These three groups were considered
reference standards for training, validation, and
external testing.

DEVELOPMENT OF THE DEEP-LEARNING
CLASSIFICATION MODEL

Our system consisted of a segmentation network
(U-Net) to detect the location of the optic disk
from fundus photographs and a classification
network (DenseNet) to classify the optic disk
into one of the three classes: normal disk, disk
with papilledema, and disk with other abnor-
malities. To visualize optic-nerve abnormalities,
we used a class-activation map (Fig. S2). A five-
fold cross-validation was performed on the pri-
mary data set to differentiate among normal
optic disks, disks with papilledema, and disks
with other abnormalities (Fig. S3). With the use

of the same thresholds as on the primary data
set, the diagnostic performance of the three-
class classification model was then assessed on
the five independent external-testing data sets.
(For details of the deep-learning system, see Sec-
tion S2c, Fig. S4, and Table S3.2*)

STATISTICAL ANALYSIS

To determine performance characteristics, we
used the one-versus-rest strategy and calculated
the area under the receiver-operating-character-
istic curve (AUC), sensitivity, specificity, and ac-
curacy for the following three cases according to
the results of our classification model: normal
as compared with abnormal optic disks (includ-
ing disks with papilledema and disks with other
abnormalities), disks with papilledema as com-
pared with those without papilledema (including
normal disks and disks with nonpapilledema
abnormalities), and disks with nonpapilledema
abnormalities as compared with normal disks
and disks with papilledema. Predictive values for
the classification of papilledema and other optic-
disk abnormalities were also calculated for each
external-testing site. Bootstrapping was used to
estimate 95% confidence intervals of the perfor-
mance metrics, with the patient as the resam-
pling unit. (For details on statistical and boot-
strapping procedures, see Section S2d.)

RESULTS

CHARACTERISTICS OF THE DATA SETS

A total of 15,846 photographs (from 7532 pa-
tients [71.0% with photographs of both eyes,
17.6% with photographs of one eye, and 11.4%
with repeat photographs during follow-up visits];
mean age, 48.6 years [range, 3 to 98]; 43.4%
men or boys) were used to train, validate, and
externally test the performance of the deep-
learning system, after the exclusion of 153 pho-
tographs because of poor quality or poor centra-
tion of the photograph, with the optic disk being
cut off at the edge. (For details on the inclusion
and exclusion of photographs, see Section S2 and
Fig. S1.)

The system was trained and validated on
14,341 photographs collected from 6779 patients
in the first 19 sites of the BONSAI consortium,
including 9156 images of normal optic disks,
2148 of disks with confirmed papilledema from
proven intracranial hypertension, and 3037 of
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Table 1. Summary of Training, Validation, and External-Testing Data Sets, According to Diagnosis of Fundus Images.
Normal Disks with Disks with Other
Location of Center Disks Papilledema Abnormalities* Total
number of images
Primary training and validation data sets
Angers, France 116 369 701 1186
Atlanta, GA, United States 441 1146 340 1927
Baltimore, MD, United States 295 104 49 448
Bologna, Italy 43 13 264 320
Bordeaux, France 19 25 26 70
Chennai, India 169 124 423 716
Coimbra, Portugal 61 28 244 333
Geneva, Switzerland 66 15 59 140
Grenoble, France 130 78 214
Guangzhou, China 27 0 91 118
Hong Kong, China 722 16 316 1054
Lille, France 330 0 0 330
London, United Kingdom 234 40 159 433
Manila, Philippines 17 17 39 73
Nagpur, India 1911 0 0 1911
Paris, France 152 89 53 294
Singapore, Singapore 4053 42 83 4178
Sydney, Australia 351 86 95 532
Syracuse, NY, United States 19 28 17 64
External-testing data sets
Bangkok, Thailand 177 38 104 319
Copenhagen, Denmark 90 47 63 200
Freiburg, Germany 98 92 138 328
Rochester, MN, United States 92 95 97 284
Tehran, Iran 156 88 130 374
Total at all centers 9769 2508 3569 15,846

s

« Other optic-disk abnormalities included nonarteritic anterior ischemic optic neuropathy (760 images), anterior inflam-

matory optic neuritis (390), other causes of optic-disk swelling (164), optic-disk drusen (570), optic-disk congenital

abnormalities (56), and optic atrophy (1629).

disks with other abnormalities. The percentage
of images classified as being normal ranged
across data sets from 9.8 to 100%; the percent-
age classified as having papilledema ranged
across data sets from zero to 59.5%. A separate
set of 1505 photographs that were collected
from 5 other centers, including 613 images of
normal disks, 360 of disks with papilledema,
and 532 of disks with other abnormalities, was
used for the external testing (Table 1).

CLASSIFICATION PERFORMANCE IN THE VALIDATION
DATA SET

In the validation data set, the system discrimi-
nated normal from abnormal optic disks (includ-
ing disks with papilledema and disks with other
abnormalities) with an AUC of 0.99 (95% confi-
dence interval [CI], 0.99 to 0.99) and discrimi-
nated disks with papilledema from all other
optic disks (normal disks and disks with non-
papilledema abnormalities) with an AUC of

N ENGL J MED 382718 NEJM.ORG APRIL 30, 2020

The New England Journal of Medicine

Downloaded from negjm.org at Universidad de Lisboa on June 17, 2021. For persona use only. No other uses without permission.

Copyright © 2020 Massachusetts Medical Society. All rights reserved.



ARTIFICIAL INTELLIGENCE TO DETECT PAPILLEDEMA

Table 2. Classification Performance of the Deep-Learning System on the Primary Validation and External-Testing Data Sets.*
AUC Sensitivity Specificity
One-vs.-Rest Classification Total Normal Papilledema  Other (95% ClI) (95% ClI) (95% ClI)
number percent
Primary validation data set
Normal vs. papilledema + other 14,341 9156 2148 3037 0.99 93.5 96.2
(0.99-0.99)  (92.9-94.1)  (95.5-96.9)
Papilledema vs. other + normal 14,341 9156 2148 3037 0.99 93.2 95.1
(0.98-0.99)  (91.8-94.5)  (94.7-95.6)
Other vs. normal + papilledema 14,341 9156 2148 3037 0.97 93.0 89.0
(0.97-0.97)  (91.9-94.0)  (88.3-89.8)
External-testing data set::
Normal vs. papilledema + other 1,505 613 360 532 0.98 86.6 95.3
(0.97-0.98)  (83.3-89.3)  (93.8-96.8)
Papilledema vs. other + normal 1,505 613 360 532 0.96 96.4 84.7
(0.95-0.97)  (93.9-98.3)  (82.3-87.1)
Other vs. normal + papilledema 1,505 613 360 532 0.90 85.7 78.6
(0.88-0.92)  (82.5-88.8)  (75.5-81.5)

Accuracy
(95% ClI)

94.5
(94.0-94.9)

94.8
(94.4-95.3)

89.8
(89.2-90.5)

91.8
(90.3-93.3)

87.5
(85.5-89.3)

81.1
(78.8-83.3)

* “Normal” indicates normal optic disks, “papilledema” indicates disks with papilledema, and “other” indicates disks with nonpapilledema
abnormalities. AUC denotes area under the receiver-operating-characteristic curve.

' The mean age of the patients included in the primary training and validation data set was 49.1 years (95% Cl, 48.7 to 49.6), on the basis of

94.5% of available patient demographic data. The male-to-female ratio in the primary training and validation data set was 0.79 (44.0% men
or boys), on the basis of 94.4% of available patient demographic data.

i The mean age of the patients included in the external-testing data set was 44.4 years (95% Cl, 43.1 to 45.8), on the basis of 99.7% of avail-

able patient demographic data. The male-to-female ratio in the testing data set was 0.61 (38.0% men or boys), on the basis of 99.6% of

available patient demographic data.

0.99 (95% CI, 0.98 to 0.99), a sensitivity of 93.2%
(95% CI, 91.8 to 94.5), and a specificity of 95.1%
(95% CI, 94.7 to 95.6). The system also discrimi-
nated disks with nonpapilledema abnormalities
from normal disks and disks with papilledema
with an AUC of 0.97 (95% CI, 0.97 to 0.97) (Ta-
ble 2 and Fig. S3).

CLASSIFICATION PERFORMANCE IN THE EXTERNAL-
TESTING DATA SETS
In the external-testing data sets, the AUCs were
0.98 (95% CI, 0.97 to 0.98), 0.96 (95% CI, 0.95 to
0.97), and 0.90 (95% CI, 0.88 to 0.92) for the
classification of normal disks, disks with papill-
edema, and disks with other abnormalities, respec-
tively (Table 2 and Fig. 1). Across the five exter-
nal-testing data sets, the AUCs ranged from 0.96
to 0.99 for the discrimination of normal from
abnormal optic disks and from 0.93 to 0.98 for
the discrimination of disks with papilledema
from all other optic disks. (For details on the
classification performance of the system on the
individual external-testing data sets, see Table S4.)
The overall accuracies of our deep-learning

N ENGL J MED 38218

system for the detection of normal disks, disks
with papilledema, and disks with other abnor-
malities in the external-testing data sets were
91.8% (95% CI, 90.3 to 93.3), 87.5% (95% ClI,
85.5 to 89.3), and 81.1% (95% CI, 78.8 to 83.3),
respectively. In the five external-testing data sets,
the trained system had an overall sensitivity and
specificity of 96.4% (95% CI, 93.9 to 98.3) and
84.7% (95% CI, 82.3 to 87.1), respectively, for the
detection of papilledema (Table 2). The mean
estimated prevalence of papilledema in all the
sets of data was 9.5% (Table S6), which resulted
in an overall positive predictive value of the sys-
tem for papilledema of 39.8% (95% CI, 36.6 to
43.2) and a negative predictive value of 99.6%
(95% CI, 99.2 to 99.7) (Table 3). (The predictive
values of the deep-learning system across a full
prevalence range for the detection of normal
discs, discs with papilledema, and discs with
other abnormalities are provided in Fig. S5.)

ADJUDICATION OF CLASSIFICATION ERRORS
In a post hoc analysis, four expert neuro-ophthal-
mologists who were not involved in the original
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in the External-Testing Data Sets.

of 0.96 (95% Cl, 0.95 to 0.97).

Figure 1. Performance of the Deep-Learning System for the Detection of Normal Disks and Disks with Papilledema

The external-testing data sets included ocular fundus photographs from five centers with diverse ethnic backgrounds.
As shown in Panel A, the deep-learning system discriminated normal optic disks from abnormal ones, with areas of
the receiver-operating-characteristic curve (AUCs) that ranged from 0.96 to 0.99 and an overall AUC of 0.98 (95%
Cl, 0.97 to 0.98). As shown in Panel B, the deep-learning system discriminated disks with papilledema from normal
disks and disks with nonpapilledema abnormalities, with AUCs that ranged from 0.93 to 0.98 and an overall AUC

analyses and who were unaware of the initial
reference-standard classification reviewed the 177
fundus photographs (11.8% of the 1505 photo-
graphs) in the external-testing data sets that had
discordant findings between the reference stan-
dard by site expert neuro-ophthalmologists and
the classification by the deep-learning system.
This analysis showed that of the 360 disks with
papilledema, 15 (4.2%) were misclassified by the
system as disks with other abnormalities but
never as normal optic disks. (For details on the
177 misclassified fundus photographs, see Sec-
tions S3a and S3b and Fig. S6A through S6C.)
A review by the same neuro-ophthalmologists of
the misclassified papilledema images at a patient
level (i.e., both eyes of a patient viewed as a pair)
disclosed only one patient with papilledema in
both eyes missed by the system in the external-
testing data sets. In 10 of the 177 fundus photo-
graphs for which the system provided a classifi-
cation that differed from the reference standard,
the four neuro-ophthalmologists, after review of

the fundus photographs, agreed with the deep-
learning system.

Subsequently, arbitration was performed by
contacting the neuro-ophthalmologists at the
applicable external-testing sites and requesting
that they reevaluate their initial reference-stan-
dard diagnosis. In these 10 discordant cases, the
classification of the deep-learning system was
considered accurate, and the discrepancies were
found to be the result of labeling errors by the
site investigators. We performed a post hoc re-
analysis of the corrected external-testing data
set with the 10 reclassified images, which re-
sulted in a slightly improved average AUC for the
overall classification performance of the system,
from 0.941 to 0.948. Subsequently, we requested
that the neuro-ophthalmologists at each of the
five centers used for the external-testing data
sets recheck all diagnoses in their respective
series of patients; this led to the identification
of an additional 3 mislabeled photographs. How-
ever, all 3 remained in the category of disks with
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Table 3. Predictive Values of the Deep-Learning System in the External-Testing Data Sets.*

Estimated

Center and Ophthalmic Condition Prevalence
Bangkok, Thailand

Papilledema 8.9

Other optic-disk abnormalities 63.3
Copenhagen, Denmark

Papilledema 3.6

Other optic-disk abnormalities 14.3
Freiburg, Germany

Papilledema 10.0

Other optic-disk abnormalities 40.0
Rochester, MN, United States

Papilledema 17.2

Other optic-disk abnormalities 32.8
Tehran, Iran

Papilledema 8.0

Other optic-disk abnormalities 32.0
All centers

Papilledema 9.5

Other optic-disk abnormalities 36.5

(95% C1)

percent

37.2 (30.9-43.9)
89.7 (86.3-92.2)

26.3 (18.3-36.2)
33.4 (27.8-39.4)

34.6 (29.2-40.5)
78.6 (72.4-83.7)

55.9 (47.7-63.8)
62.5 (56.8-67.8)

32.8 (27.1-38.9)
60.6 (54.7-66.2)

39.8 (36.6-43.2)
69.7 (67.0-72.3)

Positive Predictive Value Negative Predictive Value

(95% C1)

99.4 (97.7-99.8)
72.7 (63.8-80.0)

100 (100-100)
98.1 (95.7-99.2)

99.9 (98.9-100)
90.6 (86.2-93.7)

99.2 (97.7-99.8)
96.6 (92.4-98.5)

99.2 (98.3-99.6)
87.9 (84.0-100)

99.6 (99.2-99.7)
90.5 (88.6-92.2)

* We calculated predictive values using the sensitivity and specificity of the deep-learning system in the five individual
external-testing data sets and overall, after taking into account the estimated prevalence of papilledema and other
optic-disk abnormalities at each site. (For details on the calculation of predictive values, see Section S2d in the Supple-

mentary Appendix.)

nonpapilledema abnormalities and therefore did
not change our results.

DISCUSSION

Our objective was to assess the performance of a
deep-learning system to detect papilledema from
fundus images taken at many international cen-
ters, from patients with a variety of ethnic back-
grounds, types of fundus pigmentation, and ages
and using a variety of commercially available
digital fundus cameras. Our main finding was
that an artificial-intelligence algorithm using deep-
learning neural networks could discriminate
among normal optic disks, disks with papilledema,
and disks with other abnormalities. In our exter-
nal-testing data sets, the sensitivity for detecting
papilledema was 96.4% and the specificity was
84.7%. Negative predictive values were high, but

positive predictive values were lower and varied
considerably depending on the prevalence of
papilledema and other optic-nerve conditions.
Several studies have suggested that direct
ophthalmoscopy can be replaced by more user-
friendly ocular fundus digital cameras that pro-
vide high-quality photographs of the optic nerve
and retina, even without pharmacologic dilation
of the pupils,2#41>173132 g]though our study used
photographs taken after pupillary dilation. Most
deep-learning research in ophthalmology has
been for screening of retinal disorders and glau-
coma.*3%33> Previous studies using fewer im-
ages than ours showed that deep-learning sys-
tems could recognize right from left optic disks
in the presence of optic-nerve abnormalities on
fundus photographs,* could discriminate disks
with papilledema from normal disks with an
average accuracy of 93% (similar to the value in
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our study),” and could differentiate true optic-
disk swelling from pseudo-swelling with an ac-
curacy of approximately 95%.3®

Our study has limitations. First, it was retro-
spective, since the photographs were collected
retrospectively over a period of several years
from a large number of centers. This resulted in
an imbalance in class distribution among groups
(i.e., differing prevalence of different optic-disk
conditions), a mix of consecutive series of patients
and convenience samples, and labeling errors.

Second, we chose as a reference standard the
final diagnosis of the appearance of the normal
optic-nerve head given by an expert neuro-ophthal-
mologist at each center, based on the clinical
examination and other findings, including brain
imaging and lumbar puncture when appropriate
for patients with suspected papilledema and
follow-up data. The final diagnosis of the ap-
pearance of the optic-nerve head in healthy per-
sons was determined by neuro-ophthalmologists
or ophthalmologists, on the basis of comprehen-
sive ophthalmologic evaluations. A total of 10
labeling errors by the investigators were discov-
ered and correctly identified by our deep-learn-
ing system. Relabeling the 10 of 1505 images in
the external-testing data set improved the overall

papilledema (4.2%), it labeled them as disks with
other abnormalities and never as normal disks.

Third, the abnormal photographs were ob-
tained after pharmacologic dilation of the pupils
and may not reflect general practice. Fourth, our
network was trained and calibrated primarily to
identify normal optic nerves and those with pap-
illedema. Therefore, the threshold for diagnosing
papilledema was low, in order to avoid false nega-
tives. Whether the results will be reproducible
under other circumstances is not known.

We found that an artificial-intelligence, deep-
learning algorithm that was trained on ocular
fundus photographs had high sensitivity and
specificity for discriminating between papill-
edema and normal optic nerves. Negative predic-
tive values were high, but positive predictive
values varied depending on the prevalence of
papilledema in the population being studied.
Further investigation is required in order to pro-
spectively validate the use of deep-learning sys-
tems in various settings, which may have differ-
ent prevalences of optic-disk abnormalities from
those in our study.*
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